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Abstract 

This paper presents an approximate analytic solution for a one 

phase Stefan problem involving a superheated solid over a finite 

spatial interval using, as far as the author is aware, a novel 

application of homotopy analysis. This problem is ill posed under 

certain initial conditions where the initial energy in the solid 

phase exceeds the energy required to melt it; to avoid this 

situation the approximate analytic solution set out in this paper is 

developed subject to a set of assumptions that rules out this kind 

of behaviour (i.e., the analysis applies where there is incomplete 

melting of the solid as t → ∞). In addition, the paper discusses 

the relationship between this approximation and the 

corresponding exact solution. As such, the problem analysed here 

is well posed for all t > 0 and this paper shows how the 

approximation may be made arbitrarily accurate by adding extra 

terms to the approximation to produce an exact analytic solution 

of the Stefan problem analysed herein. 

Introduction  

This paper outlines an analysis of a one phase Stefan problem for 

a superheated solid1 over a finite spatial interval through an 

application of homotopy analysis.2 This problem is ill posed 

under certain initial conditions where the energy in the solid 

phase exceeds the energy required to melt it. In these 

circumstances, the velocity of the moving boundary separating 

the liquid and solid phases shows finite time blow up; to avoid 

this situation, the approximate analytic solution set out in this 

paper is developed subject to a set of assumptions that rules out 

this kind of behaviour (i.e., where there is incomplete melting of 

the solid as t → ∞) and ensures the problem is well posed (i.e., 

there is a unique solution that depends continuously on the initial 

data and exists for all t > 0)3. 

Various researchers have analysed this specific problem or 

variations of it using a range of techniques (including numerical 

and qualitative analysis), e.g., [1, 4, 5, 10] but have not, to the 

author’s knowledge, utilised the methods employed in this paper. 

A number of researchers have applied the homotopy analysis 

method to analyse single phase Stefan problems, e.g., [2, 6, 9] but 

have not, as far as the author is aware, considered its application 

to the specific problem analysed in this paper. 

The remainder of this paper outlines the method including the 

characterisation of the solution for both the moving boundary and 

the underlying temperature profile as separate Taylor series along 

with the development of explicit expressions for the first two 

terms of both the Taylor series. Secondly, this paper briefly 

examines the issues of the existence, uniqueness, smoothness and 

convergence of the Taylor series solutions for the moving 

                                                           
1 The corresponding supercooled single phase Stefan problem is mathematically 

equivalent to the problem analysed in this paper where u(x,t) is replaced by – u(x,t). 

See, for example, [4, 5]. 
2 For a detailed discussion of “homotopy analysis” including worked examples, see 

[7]. This paper provides a long list of applications of homotopy analysis to non-

linear problems and sets out a comparison to both perturbation and non-perturbative 

methods. 
3 Readers should note that the velocity of the moving boundary is unbounded at t = 

0 but is finite for all t > 0.  

boundary and the underlying temperature profile as well as their 

relationship to the exact solution. 

Nomenclature 

α Stefan number where α > 1 
x x space variable where 0 < x < s(t) 

t time variable where 0 < t < ∞  

u(x,t) temperature profile  

s(t) position of the moving boundary 

q embedding parameter 

c0 convergence control parameter 

 

Outline of the Mathematical Problem 

The mathematical problem analysed in this paper is as follows: 

ut(x,t) = uxx(x,t)       (1) 

     u(x,0) = 1       (2) 

           u(s(t),t) = 0       (3) 

     ux(0,t) = 0       (4) 

      ux(s(t),t) = α.st(t)      (5) 

              s(0) = 1       (6) 

where both u(x,t) and s(t) are unknown. The outer liquid phase 

(i.e., where x > s(t)) is taken to be at the melting temperature for t 

> 0 and, for convenience, the melting temperature is assumed to 

be equal to zero. Equation (5) is the Stefan condition which 

reflects the absorption of latent heat at the moving boundary as 

the superheated solid melts. 

A transformation is required in order to reduce the problem in 

equations (1) – (6) to one involving fixed boundaries. The 

specific transformation involves the introduction of a new spatial 

variable, z, defined such that z = x/s(t) and 0 < z < 1. The 

transformed boundary value problem (i.e., equations (1) – (6)) is 

as follows: 

 s(t)2.ut(z,t) = uzz(z,t) + z.s(t).st(t).uz(z,t)    (7) 

 uz(0,t) = 0       (8) 

     u(1,t) = 0 and u(z,0) = 1      (9) 

   uz(1,t) = α.s(t).st(t)     (10) 

    s(0) = 1      (11) 

Analytical Approximation to Equations (7) – (11) Using 
Homotopy Analysis 

Consider now the following “generalised” PDE and associated 

boundary and initial conditions for the unknown functions for the 

temperature profile u(z,t;q) and the position of the moving 

boundary s(t;q):  

(1 – q).[uzz(z,t;q) + z.s(t;0).st(t;0).uz(z,t;0) – s(t;0)
2.ut(z,t;0)] =    

c0.q.[uzz(z,t;q) + z.s(t;q).st(t;q).uz(z,t;q) – s(t;q)
2.ut(z,t;q)] 

             (12) 



 uz(0,t;q) = (1 – q).uz(0,t;0)    (13) 

u(1,t;q) = 0 and u(z,0;q) = 1   (14) 

uz(1,t;q) = α.s(t;q).st(t;q) + (1 – q).[uz(1,t;0) – α.s(t;0).st(t;0)]
             (15) 

     s(0;q) = 1       (16) 

The solutions to the generalised PDE subject to the associated 

boundary and initial conditions (i.e., equations (12) – (16)) are 

assumed to be both capable of representation as a Taylor series in 

q about the point q = 0 and convergent for 0 < q < 1: 

u(z,t;q) = 

n=

∞

∑
0

 [dnu(z,t;0)/dqn]qn/n! 

s(t;q) = 

n=

∞

∑
0

 [dns(t;0)/dqn]qn/n! 

When q = 1, the above PDE’s and associated boundary and 

initial conditions (i.e., equations (12) – (16)) correspond to the 

equations (7) – (11) and the Taylor series for u(z,t;1) and s(t;1) 

represent the solutions to equations (7) – (11). Accordingly, the 

practical task is to develop expressions for the coefficients in 

each of the above Taylor series. This is done by successively 

differentiating equations (12) – (16) with respect to q, setting q 

equal to 0 and then solving the resultant “subsidiary” problems. 

The constant in equation (12), c0, is referred to as the 

“convergence control parameter” which is independent of q. By 

changing c0, the rate of convergence of the Taylor series can be 

varied allowing the range of values of c0 for which the Taylor 

series converges4 to be identified. 

Small Time Solution to Equations (1) – (6) 

The starting point for the analysis is the development of an 

analytic solution applicable as t → 0 (i.e., the “small time 

solution”)5. The small time solution to equations (1) – (6), which 

is denoted by f(x,t) for the temperature profile and s(t) for the 

moving boundary location, is as follows6: 

    f(x,t) = 1 – A.erfc([1 – x]/2t½)     (17) 

s(t) = 1 – 2λt½      (18) 

where A= 1/erfc(λ) and λ is the solution to the following 
transcendental equation: e–λ² = απ½λ.erfc(λ). 

Expressions for u(z,t;0) and s(t;0) 

The next step in the analysis of equations (12) – (16) is to 

develop explicit expressions for the first term in each Taylor 

series for the moving boundary and the underlying temperature 

profile, namely: u(z,t;0) and s(t;0). When q = 0, equations (12) – 

(16) are as follows7: 

s(t;0)2.ut(z,t;0) = uzz(z,t;0) + z.s(t;0).st(t;0).uz(z,t;0)   (19) 

  u(1,t;0) = 0 and u(z,0;0) = 1    (20) 

  uz(0,t;0) = uz(0,t;0)     (21) 

 uz(1,t;0) = uz(1,t;0)      (22) 

 s(0;0) = 1       (23) 

                                                           
4 Refer to [7] for a detailed discussion of the role of the convergence control 

parameter in the homotopy analysis method. 
5 The details of the small time solution set out above will be utilised in the 

development of the Taylor series for u(z,t;1) and s(t;1). 
6 This is sometimes referred to as the “Neumann solution”. It and variations of it are 

discussed at length in [3]. It matches equations (1) – (3), (5) and (6) for all t but 

equation (4) only at t = 0. 
7 The conditions set out in equations (21) and (22) will, of course, be automatically 

satisfied by the choice of u(z,t;0). 

While the homotopy analysis method allows for considerable 

flexibility in terms of the choice of u(z,t;0) and s(t;0), the choice 

made must match the initial conditions which apply to the 

problem being analysed (i.e., equations (1) – (6))8. In the author’s 

view, the choice of u(z,t;0) and s(t;0) should also be a reasonable 

approximation to the actual solution over a wide range of values 

for z and t (including, of course, matching the solution and the 

corresponding Stefan condition exactly at t = 0). Although the 

small time solution set out above is straightforward and matches 

the actual solution and the corresponding Stefan condition 

exactly at t = 0, the behaviour of the moving boundary for the 

small time solution is such that it becomes negative within a 

finite time (behaviour not exhibited by the moving boundary in 

the problem set out in equations (1) – (6)).  

A better, but more complicated, choice for s(t;0) can be derived 

by developing a solution to a problem that approximates the 

underlying Stefan problem set out in equations (1) – (6) which: 

(i) embeds the small time solution within it; and (ii) approaches 0 

from above as t → ∞ (i.e., for finite t, 0 < s(t;0) < 1). This can be 

achieved by replacing the function u(x,t) in equations (1) – (6) 

with the sum of the small time solution9 and an unknown 

function to be determined, e(x,t), and applying the boundary and 

initial conditions to yield the following boundary value problem 

for e(x,t):  

et(x,t) = exx(x,t) where it is assumed
10 that et(x,t) = 0 (24) 

     e(x,0) = 0       (25) 

e(s(t),t) = – f(s(t),t) = A.erfc([1 – s(t)]/2t½) – 1  (26) 

    ex(0,t) = – fx(0,t) = A.e
–1/(4t)/(πt)½   (27) 

                                    ex(s(t),t) + fx(s(t),t)  

= A.e–1/(4t)/(πt)½ – A.e–(1 – s(t))²/(4t)/(πt)½ = α.st(t)  (28) 

Equation (28) is a non-linear ODE for the approximate boundary 

position (which, to avoid confusion, is denoted by the function 

a(t) in the remainder of this section) that can be solved subject to 

the initial condition that as t → 0, a(t) approaches 1 – 2λt½. Here 
the parameters A, α and λ are all defined in exactly the same way 
as in the small time solution. Equation (28) can be solved using 

homotopy analysis through the following set up starting with the 

usual assumptions that the function a(t;q) can be represented as a 

Taylor series in q at the point q = 0 and is convergent for 0 < q < 

111: 

a(t;q) = 

n=

∞

∑
0

 [dna(t;0)/dqn]qn/n!    (29) 

   q.A.e–1/(4t)/(πt)½ – A.e–(1 – a(t;q))²/(4t)/(πt)½ = α.at(t;q)  (30) 

 

a(t;q) approaches 1 – 2λt½ as t → 0   (31) 

 

When q = 1, the above ODE and associated initial condition (i.e., 

equations (30) – (31)) correspond to equation (28) and the small 

time behaviour of the moving boundary respectively and, 

                                                           
8 It is typical in problems where homotopy analysis is applied that the boundary and 

initial conditions (including the Stefan condition) are reflected in the first term of 

the Taylor series. In particular, at t = 0 both u(z,t;0) and s(t;0) must be an exact 

match with the solution u(z,t;1) and s(t;1). 
9 In other words, f(x,t) = 1 – A.erfc([1 – x]/2t½). 
10 Put simply, the PDE for e(x,t) is approximated by its steady state counterpart by 

letting exx(x,t) = et(x,t) = 0. This approach has been applied to other moving 

boundary problems. See, for example, [8] for an application dealing with a moving 

boundary problem in financial economics that applies a steady state approximation 

to the underlying governing PDE similar to the approach adopted here.  
11 It emerges that the homotopy series generated from the above problem is 

convergent where the convergence control parameter is set equal to 1 and, therefore, 

the simplified approach to the problem outlined in equations (29) – (31) is justified. 



accordingly, the series shown below is the solution to equations 

(24) – (28): 

 a(t;1) = 

n=

∞

∑
0

 [dna(t;0)/dqn]/n!   (32)  

The first two terms in the homotopy series for a(t;1) are:   

       a(t;0) = 1 – 2λt½     (33)   

 aq(t;0) = A.t
–λ² ∫

t

0
k+λ²e–1/(4k)/(α(πk)½)dk   (34)  

Figure 1 below shows the plot of the solution to the above 

approximate ODE for the moving boundary using a single step 

Euler method (with step size = 0.001) where α = 2, λ = 
0.432751599 and A = 1.850016728 along with the corresponding 

one and two-term approximations of the homotopy series 

representation of a(t;1):   
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Figure 1: Approximate Boundary Position a(t; 1) - Euler Single 

Step v. HAM Approximations

1 Term HAM Approx. 2 Term HAM Approx. a(t; 1) - Euler Single Step

   

Figure 1 indicates that, for the above parameters, the first two 

terms of the homotopy series for a(t;1) are sufficient to ensure 

convergence (or nearly so) to the actual solution12 for t < 2.  

In determining a suitable choice for u(z,t;0), it is easier to work in 

a different spatial variable, denoted in the remainder of this 

section by x, rather than z. The corresponding expression for 

u(z,t;0) (which is denoted by the function, w(x,t), in the 

remainder of this section) can be found by solving the following 

boundary value problem over: – ∞ < x < a(t;1) and 0 < t < ∞.13 

     wt(x,t) = wxx(x,t)     (35) 

         w(x,0) = 1       (36) 

     w(a(t;1),t) = 0      (37) 

The substitution r = a(t;1) – x, transforms equations (35) – (37) 

and the associated initial and boundary conditions into the 

following: 

wt(r,t) = wrr(r,t) – at(t;1).wr(r,t) where 0 < r < ∞ and 0 < t < ∞

             (38) 

w(r,0) = 1      (39) 

w(0,t) = 0      (40) 

                                                           
12 Based on a numerical analysis of the homotopy series for a(t;1) the first five 

terms are sufficient to ensure convergence for t < 15 for the same parameter values. 
13 Using a(t;1) to define the right hand limit of the spatial boundary for equations 

(35) – (37) ensures u(z,t;0) is consistent with the behaviour of a(t;1) while the 

change of spatial coordinates reflected in equations (35) – (37) has been made to 

facilitate the solution of equations (19) – (23). The solution of equations (19) – (23), 
u(z,t;0), is obtained by making the substitution x = z.s(t;0) where s(t;0) = a(t;1) to 

the solution to equations (35) – (37) derived in this section. 

The term involving the first spatial derivative in equation (38) 

presents difficulties given that there is only a single left hand 

boundary condition (i.e., equation (40)) but it can also be solved 

through the following set up starting with the usual assumptions 

that the function w(r,t;q) can be represented as a Taylor series in 

q about the point q = 0 and is convergent for 0 < q < 1: 

     w(r,t;q) = 

n=

∞

∑
0

 [dnw(r,t;0)/dqn]qn/n!     (41) 

wt(r,t;q) = wrr(r,t;q) – q.at(t;1).wr(r,t;q) – (1 – q).at(t;0).wr(r,t;0)

             (42) 

 w(r,0;q) = 1       (43) 

 w(0,t;q) = 0      (44) 

When q = 1, the above PDE’s and associated boundary and 

initial conditions (i.e., equations (42) – (44)) correspond to the 

equations (38) – (40) and, accordingly, the series shown below is 

the solution equations (38) – (40): 

    w(r,t;1) = 

n=

∞

∑
0

 [dnw(r,t;0)/dqn]/n!   (45)  

The first term (i.e., w(r,t;0)) corresponds to the small time 

solution as t → 0 because of the requirement that u(z,t;0) and 

s(t;0) match the behaviour of the exact solution as t → 0:  

 w(r,t;0) = 1 – A.erfc([1 – (a(t;0) – r)]/2t½)   (46)  

 

       = 1 – A.erfc(λ + r/(2t½))      (47)  

 

= 1 – A.erfc([1 – a(t;0) + a(t;1) – x]/2t½)   (48) 

The next term, wq(r,t;0), is the solution to a standard heat transfer 

problem over 0 < r < ∞ where wq(0,t;0) = wq(r,0;0) = 0 with a 

source term corresponding to the product of the time derivative 

of – a(t;1) + a(t;0), i.e., – at(t;1) – λ/t
½, and the first spatial 

derivative of w(r,t;0) in the homotopy series for w(r,t;1) = 

u(x,t;0). The solution, keeping in mind that r = a(t;1) – x, is: 

wq(r,t;0) = – ∫
t

0 ∫
∞

0
 wy(y,k;0).[ak(k;1) + λ/k

½] × 

  [e– (r – y)²/(4(t – k)) – e– (r + y)²/(4(t – k))]/(2(π[t – k])½)dydk  (49)  

 

The coefficients for the remaining terms involve a series of 

standard heat transfer problems over 0 < r < ∞ where 

dnw(0,t;0)/dqn = dnw(r,0;0)/dqn = 0 and a source term 

corresponding to the product of: (i) – n; (ii) the time derivative of 

the known approximate boundary function, i.e., at(t;1), and (iii) 

the first spatial derivative of the preceding term in the homotopy 

series for w(r,t;1). The solution, keeping in mind that r = a(t;1) – 

x, for the nth term of the Taylor series for w(r,t;1) for n > 2 is: 

dnw(r,t;0)/dqn = – ∫
t

0 ∫
∞

0
 [n.dn – 1wy(y,k;0)/dq

n – 1].[ak(k;1)] × 

[e– (r – y)²/(4(t – k)) – e– (r + y)²/(4(t – k))]/(2(π[t – k])½)dydk for n > 2   (50)  
 

Insofar as the behaviour of w(r,t;1) is concerned, note that a(t;1) 

(which equals s(t;0)) is always greater than or equal to a(t;0) = 1 

– 2λt½ and, as t → ∞, a(t;1) approaches a finite limit of 0. Since 

the small time solution and the corresponding fixed boundary 

problem (i.e., where s(t) = 1 for all t) for equations (1) – (6) are 

well posed for all t, the corresponding PDE and boundary / initial 

conditions for w(r,t;1) will also be well posed.14 As noted in 

Footnote 13, the required function, u(z,t;0), is obtained by 

making the substitution x = z.s(t;0) where s(t;0) = a(t;1). 

                                                           
14 The equivalence of equations (38) – (40) and equations (42) – (44) when q = 1 

coupled with the fact that the problem for w(r,t) is well posed implies the 

smoothness and convergence of the Taylor series solution for w(r,t;1). 



Expressions for uq(z,t;0) and sq(t;0) 

The development of explicit expressions for the second term in 

each Taylor series for u(z,t;1) and s(t;1), namely uq(z,t;0) and 

sq(t;0), begins by differentiating equations (12) – (16) once with 

respect to q and setting q equal to zero to yield the following: 

uzzq(z,t;0) = 0      (51) 

 uzq(0,t;0) = – uz(0,t;0)     (52) 

  uq(1,t;0) = 0 and uq(z,0;0) = 0    (53) 

uzq(1,t;0) = α.sq(t;0).st(t;0) + α.s(t;0).stq(t;0) – uz(1,t;0) 

    + α.s(t;0).st(t;0)     (54) 

 sq(0;0) = 0       (55) 

The solution to equation (51) (which is a second order linear 

ODE) subject to the conditions set out in equations (52) – (53) is 

as follows: 

    uq(z,t;0) = uz(0,t;0).[1 – z]     (56)  

Taking this result and substituting it into equation (54) yields a 

first order linear ODE for sq(t;0) subject to the condition in 

equation (55). This is easily solved given that s(t;0), st(t;0), 

uz(0,t;0), uz(1,t;0) and uzq(1,t;0) are already known: 

sq(t;0) = s(t;0)
–1 ∫

t

0
 s(k ;0).[(uz(1,k;0) – uz(0,k;0))/(α.s(k;0)) 

     – sk(k;0)]dk      (57) 

Accordingly, the two term approximation for the temperature 

profile in terms of the variables z and t is: 

        u(z,t;1) = u(z,t;0) + uz(0,t;0).[1 – z] + …   (58) 

and the two term approximation for the moving boundary is: 

s(t;1) = s(t;0) + s(t;0)–1 ∫
t

0
s(k ;0).[(uz(1,k;0) 

     – uz(0,k;0))/(α.s(k;0)) – sk(k;0)]dk + …   (59) 

Higher Order Terms, Approximate and Exact Solutions 

The steps outlined in the section immediately above can be 

repeated to allow for the derivation of higher order terms within 

each Taylor series expression for u(z,t;1) and s(t;1). The 

subsidiary PDE’s and associated boundary and initial conditions 

for all the higher order terms for the temperature profile are of 

the following general form (i.e., for n > 2):15 

d2[dnu(z,t;0)/dqn]/dz2 = gn(z,t;c0)    (60)  

where gn(z,t;c0) is: (i) the n
th derivative with respect to q 

evaluated at q = 0 of a suitably rearranged equation (12) 

excluding the second order spatial derivative; and (ii) calculated 

from the results for the previous terms for the Taylor series for 

each of u(z,t;1) and s(t;1) that have already been determined. The 

corresponding boundary conditions are d[dnu(z = 0,t;0)/dqn]/dz = 

0 and dnu(z = 1,t;0)/dqn = 0 and the initial condition is dnu(z,t = 

0;0)/dqn = 0. Furthermore, the subsidiary ODE’s for all the 

higher order terms for the moving boundary position are of the 

following general form (i.e., for n > 2): d[dnu(z = 0,t;0)/dqn]/dz 

= dn[α.s(t;0).st(t;0)]/dq
n evaluated at q = 0 and are subject to the 

initial condition dns(t;0)/dqn = 0.   

If the Taylor series for each of u(z,t;1) and s(t;1) is truncated at a 

finite number of terms, the result will be a fully analytic 

approximation of the solution to the original boundary problem 

                                                           
15 The convergence control parameter, c0, does not appear in the first two terms of 

the Taylor series for u(z,t;1) and s(t;1) but it is present in the higher order terms. 

(as represented by equations (7) – (11)). Subject to the comments 

in the following section regarding the convergence control 

parameter, c0, this approximation may be made arbitrarily more 

accurate by the addition of extra terms in each Taylor series to 

produce an exact analytic solution. To recover the solution to the 

temperature profile in the original spatial variable, x, the 

substitution, z = x/s(t;1) must be made.  

Existence, Uniqueness, Smoothness and Convergence 

As noted above, the one phase superheated Stefan problem 

analysed here is well posed where the Stefan number, α, is > 1. 
This fact and the equivalence, when q = 1, of equations (12) – 

(16) and equations (7) – (11) collectively imply the smoothness 

and convergence of the Taylor series solutions for both u(x,t;1) 

and s(t;1) and the respective approximations of each; however, 

confirmation of this by an examination of the range of values for 

c0 for which both Taylor series converge has been left as a topic 

for further research. 

Concluding Remarks 

This paper analyses the one phase superheated Stefan problem 

where the Stefan number, α, is greater than 1 using, as far as the 
author is aware, a novel application of homotopy analysis. In 

particular, an explicit approximate solution has been developed 

and the relationship between this approximation and the 

corresponding exact solution presented. Subject to the comments 

in the previous section regarding the convergence control 

parameter, c0, the approximation may be made arbitrarily 

accurate by adding extra terms to the approximation to produce 

an exact, albeit complicated, analytic solution. 
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